2016년 서울시 9급 기계설계 A책형 해설

1. 【정답】②
① 항복강도 - 연성재료(연강)가 상온에서 정하중을 받을 때 적용한다.
② 극한강도 - 취성재료가 상온에서 정하중을 받을 때 적용한다.
③ 피로한도 - 반복하중을 받는 경우에 적용한다.
④ 크리프한도 - 고온에서 정하중을 받을 때 적용한다.

2. 【정답】③
온도변화로 열응력이 생기기 위해서는 부재가 길이방향으로 구속되어 있어야 한다. 따라서 길이방향으로 구속되어있는 I와 IV가 내부응력(열응력)이 발생한다.

3. 【정답】③
스프링 한 개의 스프링 상수를 k라 하면

\[A \text{의 상당 스프링 상수는 } \frac{k}{3}, \ B \text{의 상당 스프링 상수는 } 3k, \ C \text{의 상당 스프링 상수는 } 2k \text{ } k \text{이다. 변형된 길이는 스프링상수에 반비례하므로 변형량의 비는} \]

\[3 : \frac{1}{3} = 18 : 2 : 9 \text{이다.} \]

4. 【정답】①

각속도 변동계수(coefficient of speed fluctuation) : \[\frac{w_2 - w_1}{w_1 + w_2} = \frac{2(w_2 - w_1)}{w_1 + w_2} \]

5. 【정답】③

\[\sigma = \frac{3Pl}{2nbh^2} = \frac{3 \times 80 \times 1500}{2 \times 5 \times 80 \times 10^2} = 4.5 \text{kg/mm}^2 \]

6. 【정답】③

브레이크 용량은 단위마찰면적당 시간당 발생되는 열량으로 브레이크 용량이 너무 크면 브레이크에 축적되는 열을 소산할 수 없으므로 놀아붙임이 발생한다. 따라서 냉각이 원활하지 못한 경우에는 브레이크 용량을 적게 해야 한다.

문의 : http://wirebox.tistory.com
7. **정답** ④
언더컷이 발생하지 않음 조건
\[Z \geq \frac{2}{\sin^2 \beta} \]

8. **정답** ②
\[T = 0.25 \times 100 \times \frac{100}{2} = 1250 \text{ kg} \cdot \text{mm} \]

9. **정답** ③
축이 전달하는 토크와 플랜지커플링이 전달하는 토크가 같고, 재료가 동일하므로 허용전단응력 또한 같다.
\[\tau \times \frac{\pi \cdot 150^3}{16} = \tau \times \frac{\pi \cdot d^2}{4} \times 6 \times \frac{450}{2} \]
\[d = \sqrt{\frac{4 \times 150^3}{16 \times 6 \times 225}} = 25 \text{ mm} \]

10. **정답** ③
\[\sigma_{VM} = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3 \tau_{xy}^2} \]
\[\sigma_{VM} = \sqrt{2^2 + 4^2 - 2 \cdot 4} = \sqrt{12} = 2 \sqrt{3} \text{ kgf} / \text{mm}^2 \]

11. **정답** ③
정격수명: \(L_n = \left(\frac{C}{75} \right)^3 \times 10^6 = 15 \times 10^4 \times 10^2 = 15 \times 10^6 \cdot \left(\frac{C}{75} \right)^3 = 15 \)
\[L_n = \left(\frac{C}{P} \right)^3 \times 10^6 = 24 \times 10^4 \times 5 \times 10^2 = 120 \times 10^6 \cdot \left(\frac{C}{P} \right)^3 = 120 \]
\[\left(\frac{C}{P} \right)^3 \times \left(\frac{75}{P} \right)^3 = \frac{120}{15} = 8 = 2^3 \]
\[P = \frac{75}{2} = 37.5 \text{ N} \]

문의: http://wirebox.tistory.com
12. 【정답】①
같은 재료이므로 최대허용전단응력이 같다.

\[T_a = \tau \times \frac{\pi d^3}{16}, \quad T_b = \tau \times \frac{\pi}{16d_o} \left(d^4_o - d^4_i \right) \]

\[T_a = T_b\text{이므로 } 15^3 = \frac{1}{d_o} \left(d^4_o - \left(\frac{d_o}{2} \right)^4 \right) = \frac{15}{16} d^3_o \]

\[15^2 \times 16 = d^3_o \]

\[d_o = 2 \times \sqrt[3]{450} = 15.3262 \text{ mm} \approx 16 \text{ mm} \]

13. 【정답】④
④ 레이레이식으로 계산한 축의 1차 고유진동수는 정확한 계산값보다 크다.

14. 【정답】②
\[\frac{\omega_1}{\omega_2} = \frac{D_1}{D_2} = \frac{600}{1200} = \frac{1}{2} \text{고, } \frac{D_2 - D_1}{2} = 300 \text{ mm} \]

\[D_2 = 2D_1, \quad D_1 = 600 \text{ mm} \]

\[P = 0.2 \times 500 \times \frac{0.6}{2} \times \frac{2\pi \times 1200}{60} = 1200\pi \text{ W} \]

15. 【정답】②
② 가장 큰 하중이 작용하는 접촉부에서 전등체의 변형량과 궤도륜의 영구 변형량의 합이 전등체 지름의 0.0001이 되는 정지하중을 말한다.

16. 【정답】④
'최대 힘새 = 축의 최대 허용치수 - 구멍의 최소 허용치수' 이므로
축의 최대 허용치수가 제일 큰 s6 공차역일 때 최대 힘새가 된다.

17. 【정답】③
각 리벳에 작용하는 직접전단력

\[F_D = \frac{P}{n} = \frac{600}{3} = 200 \text{ kgf} \downarrow \]

편심하중으로 발생한 모멘트에 의한 전단력

\[600 \times 400 = 2 \times F \times 200, \quad F = 600 \text{ kgf} \]

원쪽리벳에는 ↑ 방향으로 600 kgf, 오른쪽 리벳에는 ↓ 방향으로 600 kgf 만큼의 전단력이 발생한다. 따라서 최대 전단응력은 오른쪽 리벳에서 발생하고 그 크기는

\[200 + 600 = 800 \text{ kgf} \text{ 이다.} \]
18. 【정답】Ⅱ
담금질(queching)이다.

19. 【정답】Ⅰ
구름베어링의 4가지 요소 : 내륜 - 외륜 - 전동체 - 리테이너

20. 【정답】Ⅰ
① 압력각이 일정하다. - 인벌류트 기어
② 미끄럼률이 일정하여 마모가 균일하다. - 사이클로이드 기어
③ 일반적으로 언더컷이 발생하지 않는다. - 사이클로이드 기어
④ 정밀기계에 주로 사용되며 조립이 어려운 편이다. - 사이클로이드 기어