【화학개론】

1. 다음은 4가지 원자의 전자 배치를 나타낸 것이다. (ㄱ)~(ㄹ) 중 바닥 상태에 해당하는 것의 개수는?

$(\neg) \stackrel{1s}{\bigoplus} \stackrel{2s}{\frown} \stackrel{2p}{\frown}$	$(L) \ \overset{1s}{ \bigoplus} \ \overset{2s}{ \bigoplus} \ \overset{2p}{ \bigoplus} \ $
$(\Box) \stackrel{1s}{\bigoplus} \stackrel{2s}{\bigoplus} \stackrel{2p}{\bigoplus}$	$(2) \bigoplus^{1s} \bigoplus^{2s} \bigoplus^{2p}$

- ① 0
- (2) 1
- 3 2
- **4** 3
- ⑤ 4
- 2. 밑줄 친 원자의 산화수가 가장 큰 것은?
 - ① N₂
 - ② CuSO₄
 - $3 \underline{N}_2 H_4$
 - 40 NO_{3}^{-}
 - $\textcircled{5} \ \ \mathsf{H}_2 \underline{\mathsf{S}} \mathsf{O}_4$
- 3. 다음 분자에 대한 설명으로 옳은 것은?

$$\begin{array}{c} H & C \\ H_2C & C \\ C &$$

- ① 알카인(alkyne)이다.
- ② 방향족이다.
- ③ 카복실산이다.
- ④ 알코올이다.
- ⑤ 포화탄화수소이다.
- 4. 다음은 평형에 있는 반응계이다. 각각의 반응계에서 부피가 감소할 때, 평형의 위치가 이동하는 방향이 다른 하나는? (단, 온도는 일정하다.)

 - $\textcircled{2} \ \operatorname{N}_2\operatorname{O}(g) + \operatorname{NO}_2(g) \ \ensuremath{\rightleftharpoons} \ 3\operatorname{NO}(g)$

 - $\textcircled{4} \ \operatorname{N}_2(g) + 3\operatorname{H}_2(g) \ \rightleftharpoons \ 2\operatorname{NH}_3(g)$

- 5. 다음 중 축합 중합 반응을 하는 단위체는?
 - \bigcirc CH₂CH₂
 - \bigcirc CF₂CF₂
 - ③ CH₂CHCH₃
 - 4 HOCH₂CH₂OH
 - 5 $CH_2CHCHCH_2$
- 6. 다음은 25℃, 1atm에서 4가지 반응의 열화학 반응식을 나타낸 것이다. 반응 (¬)~(□) 중 온도에 관계없이 항상 자발적인 반응의 개수는? (단, 압력은 1atm으로 일정하고, 온도에 따른 ΔH와 ΔS의 변화는 없다.)

$$(\neg) \ \mathrm{N_2H_4}(g) + \mathrm{O_2}(g) \to \mathrm{N_2}(g) + 2\mathrm{H_2O}(g) \ \Delta H < 0$$

- $\text{($\bot$)} \ \operatorname{N}_2(g) + 2\operatorname{H}_2(g) \longrightarrow \operatorname{N}_2\operatorname{H}_4(g) \ \Delta H \! > \! 0$
- $(\Box) 2H_2(g) + O_2(g) \rightarrow 2H_2O(g) \Delta H < 0$
- (\exists) $H_2O(l) \rightarrow H_2O(g)$ $\Delta H > 0$
- ① 0
- 2 1
- ③ 2
- 4
- ⑤ 4
- 7. 표는 반응 $NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(l)$ 에 대한 반응물의 초기 농도와 반응의 초기 속도를 나타낸 것이다. 이 반응의 반응 속도 상수로 옳은 것은?

시치	초기[NH ₄ +]	초기[NO ₂ -]	반응의 초기 속도
실험	(M)	(M)	$(M \cdot s^{-1})$
1	0.24	0.10	7.2×10^{-6}
2	0.12	0.10	3.6×10^{-6}
3	0.12	0.15	5.4×10^{-6}

- ① $3 \times 10^{-4} \text{ M}^{-1} \cdot \text{s}^{-1}$
- ② $3.6 \times 10^{-4} \text{ M}^{-1} \cdot \text{s}^{-1}$
- $3 \times 10^{-2} \text{ M}^{-2} \cdot \text{s}^{-1}$
- $4 3 \times 10^{-4} \text{ M}^{-2} \cdot \text{s}^{-1}$
- $5.3.6 \times 10^{-4} \text{ M}^{-2} \cdot \text{s}^{-1}$

8. 다음은 은(Ag)과 납(Pb)의 반쪽 반응과 표준 환원 전위(E°)를 나타낸 것이다.

•
$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$
 $E^{0} = +0.80 \text{ V}$
• $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $E^{0} = -0.13 \text{ V}$

두 반쪽 전지를 연결해 화학 전지를 만들 때, 환원 전국(+극)이 되는 금속과 화학 전지의 표준 전지 전위(E^{0}_{cell})를 옳게 짝 지은 것은?

- ① Ag, $+0.93\,\text{V}$
- ② Ag, $+1.73\,\text{V}$
- ③ Pb, $+0.67\,\mathrm{V}$
- 4 Pb, +0.93 V
- ⑤ Pb, +1.73 V

9. 다음 화합물을 명명한 것으로 옳은 것은?

$$H_3C$$
 H
 C
 CH_2
 CH_2CH_3
 C
 H
 C
 CH_2
 C
 C

- ① 3-메틸-5-옥텐
- ② 트랜스-2-에틸-4-헵텐
- ③ 트랜스-6-에틸-3-헵텐
- ④ 시스-6-메틸-3-옥텐
- ⑤ 시스-3-메틸-5-옥텐

- 10. 공유 결합 분자 CO_2 , HCN의 공통점으로 옳은 것은?
 - ① 무극성 분자이다.
 - ② 다중 결합이 있다.
 - ③ 결합각이 120°이다.
 - ④ 무극성 공유 결합이 있다.
 - ⑤ 공유 전자쌍과 비공유 전자쌍 수가 같다.

11. 다음 6배위 착화합물의 기하 이성질체 개수로 옳은 것은?

	$[\operatorname{CoCl}_2(\operatorname{NH}_3)_4]^+$	$[CoCl_3(NH_3)_3]$
1	1	2
2	1	3
3	2	1
4	2	2
(5)	2	3

12. 다음 핵 반응식에서 ㄱ, ㄴ에 알맞은 것은?

•
$${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} \rightarrow {}^{94}_{36}\text{Kr} + {}^{139}_{56}\text{Ba} + \boxed{\ } \boxed{\ }^{1}_{0}\text{n}$$

• ${}^{96}_{42}\text{Mo} + {}^{2}_{1}\text{H} \rightarrow {}^{94}_{41}\text{Nb} + \boxed{\ } \boxed{\ }$

	7	_L_
1	1	1_0 n
2	2	$^4_2\alpha$
3	2	${}^{1}_{0}$ n
4	3	$^4_2\alpha$
5	3	${}_{0}^{1}$ n

13. 표는 3주기 원소 A~C의 순차적 이온화 에너지를 나타낸 것이다.

원소	순차적 이온화 에너지 (kJ/mol)			
	E_1	E_2	E_3	E_4
A	738	1451	7733	10540
В	578	1817	2745	11578
С	496	4562	6912	9544

원소 A, B, C의 원자 반지름을 옳게 비교한 것은? (단, A, B, C는 임의의 원소 기호이다.)

- \bigcirc C > B > A
- \bigcirc C > A > B
- 3B > C > A
- 4 B > A > C
- ⑤ A > B > C

14. 이산화탄소(CO₂) 분자에서 탄소(C)와 산소(O)의 궤도함수 혼성화로 옳은 것은?

	<u>C</u>	0
1	sp	sp^2
2	sp	sp^3
3	Sp^2	sp

- 4 sp^2 sp^2
- \bigcirc sp^2 sp^3
- 15. 다음 화학종의 가장 안정한 Lewis 구조에서 중심 원자의 형식전하가 다른 하나는?
 - ① CO_3^{2-}
 - ② POCl₃
 - 3 PO₄ 3-
 - (4) SO₄²⁻
 - ⑤ NO₃
- 16. 수소 기체가 -73℃에서 2.0 atm, 4.0 L를 차지하고 있다. 온도와 압력을 각각 27℃, 3.0 atm으로 증가시 켰을 때, 수소 기체의 부피(L)는? (단, 수소 기체는 이상기체 법칙을 따르고, -273℃ = 0 K이다.)
 - ① 2.0
 - ② 3.0
 - ③ 4.0
 - **4** 5.0
 - ⑤ 6.0
- 17. 1 atm에서 물 100 g에 비휘발성, 비전해질인 요소 6 g을 모두 녹였을 때 물의 끓는점(℃)은? (단, 요소의 분자량은 60이고, 물의 몰랄 오름 상수(Kb)는 0.5 ℃/m이다.)
 - ① 99.5
 - ② 99.95
 - ③ 100
 - **4** 100.05
 - (5) 100.5

- 18. 10g의 용질 X가 들어 있는 1L 수용액의 몰농도가 0.25M이었다. X의 분자량은?
 - ① 10
 - 2 15
 - 3 25
 - **4** 30
 - (5) 40
- 19. 25℃에서 0.040 M 아세트산(CH₃COOH)과 0.40 M 아세트산 나트륨(CH₃COONa)을 포함하는 수용액의 pH는? (단, 25℃에서 CH₃COOH의 산 해리 상수(*K*_a)의 p*K*_a 값은 4.74이다.)
 - ① 3.74
 - 2 4.74
 - ③ 5.74
 - **4** 6.74
 - ⑤ 7.74
- 20. 1atm, 6L의 아르곤 기체와 2atm, 2L의 네온 기체를 4L의 강철 용기에 모두 넣었을 때, 기체의 전체 압력(atm)은? (단, 온도는 25℃이다.)
 - ① 1.25
 - 2 1.5
 - ③ 2
 - 4 2.5
 - ⑤ 3
- 21. C, H, O로 구성된 화합물 X 23 mg을 완전 연소 시켰더니 CO_2 44 mg과 H_2O 27 mg이 생성되었다. X의 실험식은? (단, H, C, O의 원자량은 각각 1, 12, 16이다.)
 - ① CH₂O
 - ② C₂H₂O

 - $(4) C_2H_4O_3$
 - \bigcirc C₂H₆O

22. 표는 3가지 고체 결정 구조의 단위 세포에 들어 있는 입자 수와 가장 인접한 입자 수를 나타낸 것이다. ㄱ~ㄷ으로 옳은 것은?

결정 구조	단순 입방 구조	체심 입방 구조	면심 입방 구조	
단위 세포에 들어 있는 입자 수	1	٦	L	
가장 인접한 입자 수	Ľ	8	12	

		<u>L</u>	<u></u>	
1	2	4	6	
2	2	4	12	
3	5	4	6	
4	5	14	12	
(5)	8	14	6	

23. $0.50\,\mathrm{M}$ 포름산(HCOOH, $K_\mathrm{a} = 2.0 \times 10^{-4}$) 수용액의 pH는?

$$HCOOH(aq) \rightleftharpoons HCOO^{-}(aq) + H^{+}(aq)$$

- ① 1.5
- ② 2.0
- ③ 2.5
- ④ 3.0
- ⑤ 3.5

- 24. 25℃에서 10.0% NaOH 수용액의 밀도가 1.10 g/mL일 때, 이 수용액의 몰농도(M)는? (단, NaOH의 화학식량은 40.0이다.)
 - ① 2.50
 - 2 2.75
 - ③ 3.00
 - 4 3.25
 - ⑤ 3.50

- 25. 밀폐된 강철 용기에 에테인(C₂H₆) 30 g과 산소(O₂)
 160 g을 넣고 완전 연소 반응을 완결시켰을 때, 강철용기에 존재하는 물질의 총 몰수는? (단, H, C, O의원자량은 각각 1, 12, 16이다.)
 - ① 5
 - 2 5.5
 - ③ 6
 - 4 6.5
 - ⑤ 7