화학 🛚 정답

1	4	2	5	3	3	4	4	5	3
6	3	7	(5)	8	3	9	1	10	4
11	5	12	1	13	5	14			
16	2	17	1	18	3	19	4	20	2

화학 I 해설

1. [출제의도] 화학이 실생활의 문제 해결에 기여한 사례 적용하기

합성 섬유는 석유나 천연 가스를 원료로 하여 대량 생산된다. 천연 섬유보다 질기고 가벼우며 값이 싸고, 최근에는 다양한 기능성 옷을 제작할 수 있게 되었다.

2. [출제의도] 탄소 화합물 이해하기

(7)는 메테인, (4)는 에탄올이다. 물에 대한 용해도는 극성 분자인 (4)가 무극성 분자인 (7)보다 크다. 1물을 완전 연소시켰을 때 생성되는 14인의 분자 수는 17)는 12 물, 14나)는 13 물이다.

3. [출제의도] 산과 염기의 정의 적용하기

(가)에서 HCN는 브뢴스테드·로리 산으로 H₂O에게 H⁺을 준다. (나)에서 HCO₃⁻은 H⁺을 받으므로 브뢴스테드·로리 염기이다. H₂O은 산과 염기로 모두 작용하는 양쪽성 물질이다.

4. [출제의도] 고체, 액체, 기체의 자료 분석하기

고체인 A는 $\frac{ള량}{화학식량} = \frac{9.6}{64} = 0.15(몰)$, 액체인 B는 $\frac{\rlap{\ \ \, }\rlap{\ \ \, } \rlap{\ \ \, } \rlap{\ \ \, } \rlap{\ \ \, }}{ \mathring{\ \ \, } \mathring{\ \ \, } \rlap{\ \ \, }} = \frac{(0.09 \times 1000) \times 1}{18} = 5(몰)$, 기체 인 C는 $\frac{\rlap{\ \ \, }\rlap{\ \ \, }}{1499\rlap{\ \ \, }\rlap{\ \ \, }} = \frac{5}{25} = 0.2(몰)$ 이다.

5. [출제의도] 동적 평형 상태 결론 도출하기

(7)는 충분한 시간이 지났으므로 동적 평형 상태이다. $H_2O(g)$ 분자 수는 일정하고, NaCl은 용해 평형 상태이므로 용해 속도와 석출 속도가 같다.

6. [출제의도] 결합의 극성과 분자의 구조 이해하기

 $X \sim Z$ 는 각각 N, F, C이다. X_2Y_2 에서 X - X 결합과 Z_2Y_2 에서 Z - Z 결합은 모두 무극성 공유 결합이다. X_2 는 $N_2(N \equiv N)$ 이므로 다중 결합이 있다. $YZX(F - C \equiv N)$ 의 분자 구조는 직선형이다.

7. [출제의도] 전기 분해 실험 가설 설정하기

황산 나트륨은 전해질로 수용액 상태에서 전기 전도성이 있다. 물 (H_2O) 을 전기 분해하면 $O_2: H_2$ = 1:2로 생성된다. 이 실험으로 물 분자를 이루 는 수소와 산소 사이의 화학 결합은 전자가 관여 함을 알 수 있다.

8. [출제의도] 원자 반지름의 주기적 성질 자료 문 제 인식하기

바닥 상태에서 원자가 전자의 주 양자수는 주기와 같으므로 B와 D는 3주기이다. 같은 주기에서 원자 번호가 커질수록 원자 반지름은 감소하므로, 원자 반 지름이 가장 큰 원소는 Na이다. 따라서 A~E는 각 각 Be, Al, Li, Mg, Na이고, (가)는 Li,Be이다.

9. [출제의도] 원자핵의 구성 입자 자료 결론 도출하기 (나)의 조재 비용이 100%이므로 (가)와 (나)는

(나)의 존재 비율이 100%이므로 (가)와 (나)는 다른 원소이고, ①은 중성자 수이다.

원소	원자	중성자 수	질량수	양성자 수
₅ B	(가)	5	10	5
₄Be	(나)	5	b(9)	4
₅ B	(다)	a(6)	11	5

 $_5$ B 의 평균 원자량은 $(10 \times 0.2) + (11 \times 0.8) = 10.8$ 이다.

중성자 수 는 (나)에서 $\frac{5}{4}$, (다)에서 $\frac{6}{5}$ 이다.

10. [출제의도] 이온화 에너지와 유효 핵전하 그래프 결론 도출하기

A~E는 각각 AI, C, P, S, F이다. 같은 주기에서 원자가 전자의 유효 핵전하는 원자 번호가 클수록 커지므로 C(P) > A(AI)이다. 같은 주기에서 제1이온화 에너지는 15족(P) > 16족(S)이다.

11. [출제의도] 화학 결합의 종류와 특성 자료 분 석하기

 $A \sim E$ 는 각각 C, Mg, Na, O, F이다. 전기 음성도는 D(O) > A(C)이다. B(Mg)와 C(Na)는 금속 결합 물질이므로 고체 상태에서 전기 전도성이 있다. BD(MgO)와 CE(NaF)는 이온 결합 물질이므로 고체 상태일 때 외부에서 힘을 가하면 쉽게 부서진다.

12. [출제의도] 용액의 pH와 pOH 탐구 수행하기

25℃에서 산성 용액의 pH는 7보다 작고 염기성 용액의 pH는 7보다 크므로 X~Z의 pH는 각각 3, 9, 4이다. pH로 표시된 수용액은 1가지이고, H₃O⁺의 몰 농도는 X가 Y의 10⁶배이다. H₃O⁺의 양(몰)은 몰 농도×부피이므로 X는 ((1×10⁻³)×0.2)(몰), Z는 ((1×10⁻⁴)×0.1)(몰)이다.

13. [출제의도] 루이스 전자점식 자료 분석하기

루이스 전자점식을 고려하면 (r)는 X_2 (나)는 XY이다. X와 Y는 각각 F 또는 CI이므로 a는 18 또는 34 중 하나이고, (r)로 가능한 분자는 NF $_3$ 이므로 a는 34이다. X \sim Z는 각각 C1, F, N이다. (나)는 CIF로 전기 음성도는 F>CI이며, Y(F)는 부분적인 (-)전하를 띤다.

14. [출제의도] 분자에서 공유 결합 자료 분석하기 X~Z는 각각 F, C, O 이며, (가)~(라)는 다음과 같다.

분자	루이스 구조식	분자	루이스 구조식
(가)	$: \ddot{\mathbf{F}} - \mathbf{C} \equiv \mathbf{C} - \ddot{\mathbf{F}}:$	(다)	$\dot{\mathbf{O}} = \mathbf{C} = \dot{\mathbf{O}}$
(나)	: <u>E</u> – Ö – Ö – E:	(라)	

다중 결합이 있는 분자는 (가), (다), (라) 3가지 이며, (다)와 (라)는 평면 구조이다.

15. [출제의도] 전자 배치와 양자수 자료 결론 도 출하기

①~⊙의 양자수 조합은 다음과 같다.

카드	n	l	m_l	m_s	카드	n	l	m_l	m_s
9	1	0	0	_	1	1	0	0	_
(L)	2	1	+ 1	$-\frac{1}{2}$	H	2	1	0	$+\frac{1}{2}$
E	2	1	+ 1	$+\frac{1}{2}$	(A)	2	0	0	$-\frac{1}{2}$
2	2	0	0	$+\frac{1}{2}$	0	2	1	- 1	$+\frac{1}{2}$

16. [출제의도] NaOH 수용액 제조 실험 설계하기

(나)에서 수용액에 들어 있는 용질의 양은 1.5×0.1 = 0.15(몰)이고, $w=40\times0.15=6$ (g)이다. (다)에서 용액 V mL에 포함된 용질의 양은 $1.5\times\frac{V}{1000}$ (몰)이다. 500 mL 용액을 만들었으므로 $1.5\times\frac{V}{1000}\times\frac{1}{0.5}=0.06$ (M)에서 V=20(mL)이다. 따라서 $\frac{w}{V}=\frac{3}{10}$ 이다.

17. [출제의도] 산화 환원 반응식 적용하기

CI는 산화수가 1증가하고 Cr은 산화수가 3감

소한다. 증가한 총 산회수와 감소한 총 산화수는 같이야 하므로 $6\text{Cl}^- + \text{Cr}_2\text{O}_7^{2^-} + 14\text{H}^+ \rightarrow 3\text{Cl}_2 + 2\text{Cr}^{3^+} + 7\text{H}_2\text{O}$ 이고, a+b+c>d+e+f이다. Cl^- 은 산화되어 $\text{Cr}_2\text{O}_7^{2^-}$ 을 환원시키므로 환원제이다. 화학 반응식에서 7 몰의 H_2O 이 생성될 때 6 몰의 전자가 이동한다.

18. [출제의도] 중화 반응의 양적 관계 결론 도출하기

음이온 수의 비율을 고려하여 (가)~(다)에서 혼합 전 HCI(aq), $H_2SO_4(aq)$, NaOH(aq)의 이온 수(몰)를 구하면 다음과 같다.

혼합	혼합 전 용액의 이온 수(몰)						
	HC1(aq)		$H_2SO_4(aq)$		NaOH(aq)		
용액	H ⁺	C1	H +	SO ₄ ²⁻	Na ⁺	OH-	
(가)	4N	4N	2N	1N	6N	6N	
(나)	2N	2N	4N	2N	9N	9N	
(다)	4N	4N	4N	2N	12N	12N	

(나)에서 혼합 전 NaOH의 양은 9N 몰, (다)에서 혼합 전 H_2SO_4 의 양은 2N 몰이므로 x=15, y=20이다. 따라서 x:y=3:4이다. (나)와 (다)의 OH^- 의 몰 농도 비는 (나):(다)= $\frac{3N}{40}:\frac{4N}{50}=15$: 16이다. 따라서 H_3O^+ 의 몰 농도는 (나) > (다)이고, PH는 (다) > (나)이다. (다)에서 혼합 용액에 존재하는 OH^- 수는 4N 몰이므로 완전히 중화시키기 위해 필요한 HC1(aq)의 부피는 10 mL이다.

19. [출제의도] 화학 반응에서 열의 출입 자료 분석하기

A의 용해 과정은 온도가 상승했으므로 발열 반응이다. 물 100 g에 B 10 g을 녹였을 때 출입하는 열량(J)은 $\frac{10}{4} \times (4.2 \times 104 \times t) = 1092t$ 이다. 1몰을 녹였을 때 출입하는 열량은 A가 $(4.2 \times 104 \times t) \times \frac{1}{0.1}$ 이고, B가 $(4.2 \times 104 \times t) \times \frac{1}{0.05}$ 이다.

20. [출제의도] 기체 반응의 양적 관계 자료 분석 하기

일정 온도와 압력에서 기체의 양(몰)은 부피에 비례한다. (나)에서 반응 후 전체 기체의 양(몰) 이 감소하다가 증가하였으므로 다음과 같다.

넣어 준 B의 총 질량(g)	0	w	2w	3w
반응 후 전체 기체의 양(몰)	21N	15N	13N	15N
모두 반응한 물질	В	В	Α	Α

넣어 준 B의 총 질량이 2wg에서 3wg이 될 때반응 후 전체 기체의 양이 2N 몰 증가하므로 B wg의 양은 2N물이다.

A와 B의 양적 관계를 나타내면 다음과 같다.

(가)에서	a A	+ B	\rightarrow 2C
반응 전	m	n	
반응	-an	-n	+2n
반응 후	m-an	0	2n

 $\therefore m + (2-a) n = 21N \cdots \text{ } \bigcirc$

$\mathrm{B}\ 2N$ 몰일 때	aA	+ B	\rightarrow 2C
반응 전	m-an	2N	2n
반응	-2aN	-2N	+4N
반응 후	m-an-2aN	0	2n+4N

m-an-2aN+2n+4N=15N $m+(2-a)n=(11+2a)N \cdots (2)$

①과 ②를 연립하면 *a*=5이다.

@ 1 @ E	силс «	· • .	
$\mathrm{B}\ 4N$ 몰일 때	5 A	+ B	\rightarrow 2C
반응 전	m-5n	4N	2n
반응	-(m-5n)	$-\frac{(m-5n)}{5}$	$+\frac{2(m-5n)}{5}$
반응 후	0	$4N - \frac{(m-5n)}{5}$	$2n + \frac{2(m-5n)}{5}$

 $\therefore 4N - \frac{(m-5n)}{5} + 2n + \frac{2(m-5n)}{5} = 13N$

m+5n=45N ··· ③ ①과 ③을 연립하면 m=30N, n=3N이다.