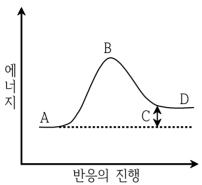
국가직 18년 5월 17일 화공직 공업화학 총평

지안공무원학원 화공직 담당 이병관입니다.

지난 4월 7일 국가직에 비해 상당히 쉽게 출제가 되었으며, 1~2문제를 제외하고는 충분히 공부하였다면 쉽게 풀 수 있는 문제들이 많았습니다. 예상대로 무기공업화학보다는 유기공업화학에서 더 많은 출제율이 나왔고 중요개념에 대한 이해와 암기를 하였다면 충분히 풀 수 있었습니다. 무엇보다 반용식에 대한 해석을 묻는 문제들이 없었기 때문에 무난했다고 볼 수 있습니다.


하지만 지난번 시험과 같이 요즘 출제유형은 일반화학과 유기화학, 무기화학의 내용에 대해 묻는 문제들도 간간히 나오기 때문에 기본이론에 대해 충분히 공부하여 대비해야 될 것 같습니다.

수고하셨습니다.

전공 과목	기출 단원	유형	문항 수
무기공업화학	산 · 알칼리 공정	비료공업	1
	전기화학공정	전기화학/연료전지	2
	반도체공정	-	0
	금속제련공정	-	0
	촉매	활성화에너지	1
	무기정밀공업	제올라이트	1
유기공업화학	단위반응	-	0
	석유화학공정	리포밍/석유유도체/세탄가	3
	고분자공업	결정화(2)/중합법	3
	유기정밀화학공업	유지	1
일반화학		이온결함	1
유기화학		마르코니코프/SN1반응/친전자체	3
무기화학		희토류	1
생화학		효소(2)/단백질	3
전체			20

2018년 지방직 공업화학 문제풀이

문 1. 다음 에너지 도표에 해당하는 반응에 촉매를 가하여 반응 속도가 빨라졌을 때, A - D 중에서 가장 큰 영향을 받는 부분은?

- ① A
- ② B
- ③ C
- **4** D

해설

무촉매 반응은 자유 분자들의 충돌에 의해 반응이 진행되어 활성화에너지가 높지만 촉매반응은 반응물이 먼저 촉매 표면에 흡착하고 흡착된 성분들간에 반응이 일어나 생성물로 전환된 후 생성물이 탈착하는 과정으로 진행된다. 흡착된 성분들은 서로 촉매 표면에 가깝게 위치하고 있으므로 활성화에너지가 낮다. 답: 2

- 문 2. 효소 반응에서 속도 상수와 온도와의 관계를 나타내는 식은?
- ① 이상 기체식
- ② Beer-Lambert 4
- ③ Arrhenius 식
- 4 van der Waals 4

해설

아레니우스식

속도상수와 온도관계

 $k = A \exp(-E/RT)$

http://www.zianedu.com/

- 문 3. 이온 결합 화합물은?
- ① HCI
- ② NaCl
- \Im BF₃
- 4 NH₃

해설

양이온과 음이온이 정전기적 인력으로 결합하여 생기는 화학결합이다. 대응되는 화학결합으로는 공유결합을 들 수 있으며, 대표적인 예로 소금과 같이 양성이 강한 금속과 음성이 강한 비금속의 결합물이 있다. 답: 2

- 문 4. 비료의 3요소가 아닌 것은?
- ① 질소(N)
- ② 인(P)
- ③ 마그네슘(Mg)
- ④ 칼륨(K)

해설

질소(N), 인(P), 칼륨(K) 세 성분이 가장 결핍되기 쉽기 때문에 비료의 3요소로 불린다. 답: 3

- 문 5. 전기 화학 반응에 대한 설명으로 옳은 것만을 모두 고르면?
- ㄱ. 반응 속도는 전류에 비례한다.
- ㄴ. 전극 전위는 전극 내 전자의 에너지를 의미한다.
- □. 전류와 전극 전위를 동시에 조절할 수 없다.
- ㄹ. 전기 화학 반응은 전극의 표면 근처에서만 가능하다.
- ① ¬, ∟
- ② ∟, ⊏
- ③ ¬, ⊏, ≥
- ④ ¬, ∟, ⊏, ≥

해설

전기화학반응의 특징

1. 전극의 전위는 전극내 전자의 에너지를 뜻한다.

- 2. 전기화학반응은 전극의 표면에서만 가능하다.
- 3. 전기화학반응은 여러단계를 거쳐서 진행된다.
- 4. 전류는 반응속도의 표현이다.
- 5. 전기화학반응의 반응속도는 전극전위에 의해 조절된다.
- 6. 전위와 전류를 통시에 조절할 수 없다.

답: 4

- 문 6. 석유의 전화(conversion) 과정에서 리포밍(reforming)에 대한 설명으로 옳지 않은 것은?
- ① 촉매를 이용하여 리포밍하는 것을 접촉 개질이라 한다.
- ② 나프텐계 탄화수소를 방향족 탄화수소로 변환시키는 기술이다.
- ③ 옥탄가를 높이는 석유 전화 기술이다.
- ④ 중질유의 분해에 의해 가솔린을 만드는 기술이다.

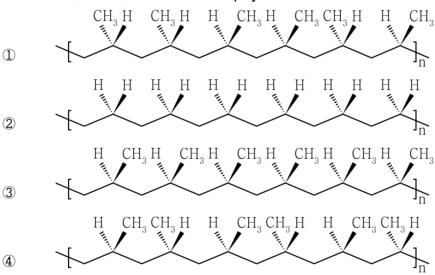
해설

개질: 리포밍

옥탄가가 높은 가솔린을 만들기 위해 나프텐계 탄화수소, 파리핀을 방향족 탄화수소로 전환하는 방법으로 BTX(벤젠, 톨루엔, 크실렌)를 제조하는데 사용된다.

접촉개질

- ① 목적: 고옥탄가 가솔린을 만드는데 목적
- ② 촉매: 알루미나 또는 실리카/알루미나 등의 고체산을 지지체로 한 백금(Pt)/레늄(Re) 촉매.
- ③ 석유의 상압증류에서 얻은 중질가솔린(옥탄가 40~50)을 원료로 하여 iso파라핀과 방향족 탄화수소가 주성분인 개질 가솔린(옥탄가 95~100)을 얻는다.(수소화분해, 이성질화 반응)
- ④ 접촉개질의 단점: 방향족 탄화수소가 들어있으면 엔진에 찌꺼기와 배출가스에 나오는 성분들로 광화학스 모그의 원인이 되기 때문에 연료로 사용되는 대신에 석유화학공업의 원료로 사용.


분해에 의해 가솔린을 만드는 기술은 크래킹이다.

문 7. 다음 반응의 주생성물은?

해설

Markovnikov 법칙: 불포화 결합에서 첨가반응이 일어나면 수소는 수소가 많은 쪽으로 결합된다. 답: 3

문 8. 결정화가 가장 어려운 폴리올레핀(polyolefin) 구조는?

해설

고분자에서 결정화가 어려운 것은 불규칙한 아탁틱 구조가 어렵다.

아탁틱 구조: X그룹의 불규칙한 배열, 규칙성의 결역가 중요하다. ①

아이소탁틱 구조: 모든 X그룹이 주사슬 평면에 한쪽에 정렬되어 있는 구조이다. ②, ③

신디오탁틱 구조: X 그룹이 평명의 어느 한쪽에 교대로 위치한다. ④

문 9. 다음 반응이 S_N1 반응 또는 E1 반응으로 진행될 때. (가)와 (나)의 주생성물은?

(7∤) ←
$$\frac{S_N 1}{CH_3CH_2OH + (CH_3)_3CBr}$$
 ← $\frac{E1}{CH_3CH_2OH + (CH_3)_3CBr}$ ← $\frac{E1}{CH_3CH_2OH}$ ← $\frac{CH_3CH_2OH}{CH_3CH_2OH}$ ← $\frac{CH_3CH_2OH}{CH_3CH}$ ← $\frac{CH_3CH_2OH}{CH_3CH}$ ← $\frac{CH_3CH_2OH}{CH_3CH}$ ← $\frac{CH_3CH}{CH_3CH}$ ← $\frac{CH_3CH}{CH_3C$

해설

(가) 가용성 분해 반응

할로젠화 알킬과 물이 반응하면 에터가 생성된다.

(나) E1 반응

속도결정단계가 카보양이온 생성 단계로 카보양이온 중간체가 생성된 후 염기로 작용하는 용매가 하이퍼컨주 게이션하고 있는 베타 수소를 제거하면서 알켄이 생성된다.

3차나 2차 할로젠화 일킬의 경우에만 적용된다.

답: 4

문 10. 에틸렌(ethylene)으로부터 아세트알데하이드(acetaldehyde)를 합성하는 Wacker 공정을 수행하기 위하여 필요한 화합물이 아닌 것은?

- ① 염화 팔라듐(PdCl₂)
- ② 염화 납(PbCl₂)
- ③ 염화 구리(CuCl₂)
- ④ 염산(HCI)

해설

악커공정(Wacker process): 에틸렌을 직접 액상 산화시켜 만드는 방법으로 염화 팔라듐($PdCl_2$), 염화 구리($CuCl_2$), 염산을 사용하여 아세트알데히드를 제조한다.

 $CH_2=CH_2 + PdCI_2 + H_2O \rightarrow CH_3CHO + Pd^0 + 2HCI$

 $Pd^{0} + 2CuCl2 \rightarrow PdCl_{2} + 2CuCl$

 $4CuCl \ + \ 4HCl \ + \ O_2 \ \rightarrow \ 4CuCl_2 \ + \ H_2O$

문 11. 유지(fatty oil)의 최소 단위는?

- ① 아크릴로나이트릴(acrylonitrile)
- ② 뷰틸알데하이드(butylaldehyde)
- ③ 클로로프렌(chloroprene)
- ④ 트리글리세라이드(triglyceride)

해설

답: 4

문 12. 다음 화학종 중에서 친전자체(electrophile)에 해당하는 것만을 모두 고르면?

```
¬. NO<sub>2</sub><sup>+</sup>

∟. CN<sup>−</sup>

⊏. CH<sub>3</sub>NH<sub>2</sub>

≡. (CH<sub>3</sub>)<sub>3</sub>S<sup>+</sup>
```

- ① ¬, ∟
- ② ¬, ≥
- ③ ∟, ⊏
- ④ ⊏, ≥

해설

친전자체는 양전하를 띠고있거나 전자가 많은 중심에 끌리는 빈 오비탈을 갖고 있는 중성 분자다. 답: 2 문 13. 효모의 반응에 의해 바이오에탄올을 생산할 때 가장 적합한 기질은?

- ① 글루코스(glucose)
- ② 아세트산(acetic acid)
- ③ 퍼퓨랄(furfural)
- ④ 페놀(phenol)

해설

바이오에탄올은 석유에너지를 대체하는 연료로 제조시 사용하는 효모는 포도당 등 탄소원자 6개를 갖는 6탄 당을 분해해서 에탄올을 만든다.

구분	종류	분자식	প
6탄당	포도당(glucose)	$C_6H_{12}O_6$	혈액, 양파 등의 성분
	과당(fructose)	$C_6H_{12}O_6$	열매, 꿀 등의 성분
	갈락토오스(galactose)	C ₆ H ₁₂ O ₆	젖당이나 식물 점액성분
5탄당	리보오스(ribose)	C ₅ H ₁₀ O ₅	RNA의 구성성분
	디옥시리보오스(deoxy)	C ₅ H ₁₀ O ₄	DNA의 구성성분

답: 1

문 14. 단백질의 이차 구조(secondary structure)를 결정하는 데 가장 중요한 결합력은?

- ① 공유 결합(covalent bond)
- ② 수소 결합(hydrogen bond)
- ③ 이온 결합(ionic bond)
- ④ 분산력(dispersion force)

해설

단백질의 구조

2차구조	1차구조로 생긴 폴리펩티드 사슬이 가까운 아미노산들이 규칙적인 수소결합에 의해 꼬이
	거나 접혀서 만들어진 α -나선구조나 $β$ -병풍구조
	\cdot α -나선구조: 단백질 모양이 나선형으로 꼬여 만들어진 구조로 손톱, 머리카락 등에
	함유된 케락틴
	\cdot eta -병풍구조: 단백질의 모양이 병풍모양으로 꺾인 주름 구조로 명주실을 이루는 피브
	로인

문 15. 다음 식의 중합 방법은?

$$n H_{2}N-R-\overset{O}{C}-OH \xrightarrow{-(n-1)H_{2}O} H + \overset{H}{\underset{N}{-}} R-\overset{O}{\underset{C}{-}} \underset{n}{\underset{N}{-}} OH$$

- ① 축합 중합(condensation polymerization)
- ② 부가 중합(addition polymerization)
- ③ 이온 중합(ionic polymerization)
- ④ 배위 중합(coordination polymerization)

해설

축합은 두 분자가 반응하여 작은 분자가 빠지면서 보다 큰 분자로 되는 반응이다. 답: 1

문 16. 결정성 고분자에 대한 설명으로 옳지 않은 것은?

- ① 용융 온도 이상에서 고분자는 결정성을 보인다.
- ② HDPE(high density polyethylene)는 결정성 고분자이다.
- ③ 일반적으로 결정화도가 증가하면 불투명해진다.
- ④ 결정화도는 고분자의 물리적 물성에 영향을 준다.

해설

결정성 고분자는 용용온도이상에서 결정성을 보여주지 못한다.

답: 1

문 17. 전자 재료로 많이 사용되는 희토류(rare earth)는?

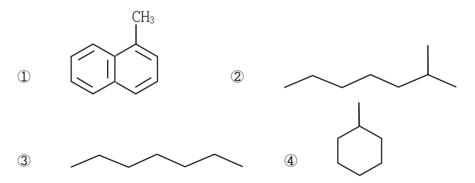
- ① 할로젠족(halogen)
- ② 알칼리 토금속(alkaline earth metal)
- ③ 란타넘족(lanthanide)
- ④ 알칼리 금속(alkaline metal)

해설

란타넘족원소: 원자번호 57에서 71에 배열되는 일련의 금속들. 란탄, 세륨, 디스프로슘 등의 원소를 일컫는 말로, 희귀 광물의 한 종류임. 화학적으로 안정되면서도 열을 잘 전달하는 성질이 있어 삼 파장 전구, LCD 연마 광택제, 가전 제품 모터 자석, 광학 렌즈, 전기차 배터리 합금 등의 제품을 생산할 때 쓰인다. 답: 3

문 18. 연료 전지와 전해질의 연결이 옳지 않은 것은?

- ① 알카라인 연료 전지(AFC) KHCO₃
- ② 인산염 연료 전지(PAFC) H₃PO₄
- ③ 고체 전해질 연료 전지(SOFC) Y_2O_3 / ZrO_2
- ④ 용용탄산염 연료 전지(MCFC) Li₂CO₃ / K₂CO₃


해설

연료전지의 종류 요약

	인산형	용융 탄산염	고체산화물	알칼리	고분자전해질
	(PAFC)	(MCHC)	(SOFC)	(AFC)	(PEFC)
전해질	인산	탄산 리튬/ 탄산 칼륨	안정화 지르코니아	수산화 칼륨	Nafion
전도 이온	수소 이온	탄산 이온	산소 이온	수산화 이온	수소 이온
작동 기체	수 소	수소/ 일산화탄소	수소/ 일산화탄소	수소	수소
운전 온도	약 200℃	약 650℃	약 1000℃	상온~100℃	약 80℃

답: 1

문 19. 세탄가(cetane number)가 0인 기준 화합물의 구조는?

해석

디젤기관에서 안티노킹성인 연료 자체의 착화성을 나타내는 수치로 착화성이 우수한 세탄 $(C_{16}H_{34})$ 을 100, 착화성이 나쁜 1-메틸나프탈렌 $(C_{11}H_{10})$ 을 0으로 하여 산출한 값이다.

답: 1

문 20. 흡착제, 촉매 및 세제 원료로 널리 사용되는 제올라이트(zeolite)인 ZSM-5에 포함되지 않는 원소는?

- ① 산소(0)
- ② 알루미늄(AI)
- ③ 규소(Si)
- ④ 황(S)

해설

제올라이트의 가장 기본적인 구조단위는 $[SiO_4]_4$ -와 $[AIO_4]_5$ -의 사면체들이다.