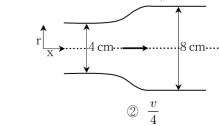

화학공학일반

- 문 1. 온도차이 △T, 열전도도 k, 두께 x, 열전달 면적 A인 평면벽을
 통한 1차원 정상상태 열흐름 속도는 Q이다. 벽의 열전도도 k가
 4배 증가하고 두께 x가 2배 증가할 때, 열흐름 속도는?
 - \bigcirc $\frac{Q}{2}$
 - ② Q
 - ③ 2Q
 - ④ 4Q
- 문 2. 회전펌프(rotary pump)에 대한 설명으로 옳지 않은 것은?
 - ① 운전 속도가 한정되어 있다.
 - ② 운동 부분과 고정 부분이 밀착되어 있다.
 - ③ 배출 공간에서 흡입 공간으로 역류가 적다.
 - ④ 피스톤 양쪽에서 교대로 액체를 끌어들인다.
- 문 3. 상부가 개방되고 바닥에 배출구가 있는 탱크에 물이 높이 h만큼 채워져 유지된다. 탱크의 배출구를 통한 물의 배출 속도는? (단, 모든 마찰 손실은 무시하고, 배출 중 물의 높이 h는 일정하며, g는 중력가속도이다)
 - ① \sqrt{gh}
 - \bigcirc $\sqrt{2gh}$
 - ③ gh
 - (4) 2gh
- 문 4. 2성분계 기체 확산계수(diffusion coefficient)에 대한 설명으로 옳은 것만을 모두 고른 것은? (단, 이상기체이며 반응성이 없다)
 - ㄱ. 온도가 일정할 때 압력이 높아지면, 확산계수는 커진다.
 - ㄴ. 분자량이 크면, 확산계수는 작아진다.
 - 다. 압력이 일정할 때 온도가 높아지면, 확산계수는 커진다.
 - ① 7, ∟
 - ② 7. ⊏
 - ③ ∟, ⊏
 - ④ 7, ∟, ⊏
- 문 5. 넓은 평판 표면에서 표면 위의 유체로 대류 열전달이 발생하고 있다. 이때 열흐름 속도를 높이는 방법으로 옳은 것은?
 - ① 평판 표면에 핀(fin) 등 확장표면 장치를 설치한다.
 - ② 유체의 흐름 속도를 낮춘다.
 - ③ 평판 표면에 열저항이 큰 또 다른 평판을 올려놓는다.
 - ④ 유체의 온도와 평판 표면의 온도 차이를 줄인다.
- 문 6. 부피가 V[L]인 용액 내에 분자량이 M_A[g/mol]인 용질 A가 n몰 용해되어 있다. 이 용액이 부피유속 120 L/min으로 흐를 때, A의 질량유속[g/h]은?
 - ① $120 \, \text{nM}_{A}$
 - ② $120 \, \text{nM}_{\text{A}}/\text{V}$
 - $3 7,200 \, \text{nM}_{\text{A}}$
 - $4 7,200 \, \text{nM}_{\text{A}}/\text{V}$

- 문 7. 원형관 내 공기의 유속을 측정하기 위해 설치한 피토관의 압력차가 128 Pa일 때, 공기의 유속[m/s]은? (단, 공기의 밀도는 1 kg/m³이며 비압축성 흐름으로 가정하고, 마찰손실은 없다)
 - ① 16
 - ② 32
 - ③ 64
 - 4 128
- 문 8. 고체 입자층을 통과하는 유체의 속도가 증가하면 고체 입자층의 유동화 현상이 발생하게 된다. 이에 대한 설명으로 옳지 않은 것은?
 - ① 유동화된 고체 입자층의 압력 강하는 유체 속도가 빨라져도 일정하다.
 - ② 유동화된 고체 입자층의 높이는 유체 속도가 빨라짐에 따라 증가한다.
 - ③ 최소 유동화 속도는 입자의 크기에 영향을 받지 않는다.
 - ④ 최소 유동화 속도는 입자의 밀도에 영향을 받는다.
- 문 9. 다음 그림은 초기에 온도가 T_0 로 균일한 무한 평판의 단면이다. 평판의 양쪽 측면을 급격히 가열하여 표면온도를 T_S 로 유지하면 평판 내부에서 비정상상태 열전도가 진행된다. 평판의 중심선 온도(T_c)가 가장 빨리 상승하는 평판의 열전도도 $k[W/m\cdot K]$ 와 비열 $c_p[J/kg\cdot K]$ 는? (단, 평판의 밀도는 일정하다)


	$\frac{c_{\rm p}}{c_{\rm p}}$
1 1	500
2 1	1,000
3 5	500
(1) 5	1.000

- 문 10. 어떤 유기화합물 A는 C, H, O, N으로만 구성되어 있다. A의 원소분석 결과, 이 중 C, H, N의 질량 분율은 각각 0.42, 0.06, 0.28이다. A의 가능한 분자량[g/mol]은? (단, C, H, O, N의 원자량은 각각 12. 1, 16. 14이다)
 - ① 200

2 250

3 300

- ④ 350
- 문 11. 비압축성 유체가 다음 그림과 같이 원형관 내에서 x축 방향으로 흐른다. 이때 직경이 4cm인 원형관에서 평균속도가 v일 때, 직경이 8cm인 원형관에서의 평균 속도는? (단, 흐름은 정상상태이다)

 $\frac{1}{8}$

(4) v

 $\frac{v}{2}$

- 문 12. 필터로 덮인 판 사이의 공간에 슬러리를 가압 주입하여 고체 케이크와 액체로 분리하는 비연속 가압 여과기는?
 - ① 수평 벨트 여과기(horizontal belt filter)
 - ② 원심 여과기(centrifugal filter)
 - ③ 회전 드럼 여과기(rotary drum filter)
 - ④ 여과 프레스(filter press)
- 문 13. 단면적이 0.1 m^2 인 원형관을 통해 비압축성 뉴턴 유체(Newtonian fluid)가 충류로 흐른다. 유체의 부피 유속이 $0.04 \text{ m}^3/\text{s}$ 일 때, 원형관 중심에서 유체의 유속[m/s]은? (단, 흐름은 정상상태 완전발달흐름이다)
 - ① 0.2

2 0.4

③ 0.8

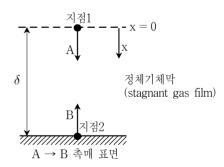
- ④ 1.6
- 문 14. 어떤 고체 입자의 표면적이 8 mm², 부피가 1.8 mm³, 상당지름이 1.5 mm일 때 구형도(sphericity)는? (단, 상당지름은 고체 입자와 같은 부피의 구 지름이다)
 - ① 0.3

② 0.6

③ 0.7

- **4** 0.9
- 문 15. 효소촉매를 이용한 $A \rightarrow R$ 반응의 반응속도식은 $-r_A = \frac{k C_A C_{E_0}}{M + C_A}$

로 표현된다. A의 농도(C_A)와 반응속도와의 관계에 대한 설명으로 옳은 것은? (단, 효소의 초기농도(C_E), k와 M은 상수로 가정한다)


- ① $C_A \ll M$ 이면, $-r_A \propto \frac{1}{C_A}$ 이다.
- ② $C_A \ll M$ 이면, $-r_A \propto C_A$ 이다.
- ③ $C_A \gg M$ 이면, $-r_A \propto \frac{1}{C_A}$ 이다.
- ④ $C_A\gg M$ 이면, $-r_A$ $\propto C_A$ 이다.
- 문 16. 향류(countercurrent flow) 이중관 열교환기 내에서 알코올과 물 사이에 열이동이 일어난다. 알코올은 60 °C로 주입되어 30 °C로 배출되고, 물은 16 °C로 주입되어 32 °C로 배출된다. 관을 통한 단위 면적당 열흐름 속도[W/m²]는? (단, 총괄 열전달 계수는 600 W/m²·°C이고, ln 2 = 0.7이다)
 - 12,000
 - 2 14,000
 - ③ 16,000
 - 4) 18.000

- 문 17. 핵세인(hexane)과 헵테인(heptane)의 2성분 혼합물이 기액 평형을 이루고 있다. 기상에서 핵세인과 헵테인의 몰분율이 각각 0.5일 때, 액상에서 핵세인의 몰분율은? (단, 혼합물은 라울(Raoult)의 법칙을 따르며, 기액 평형상태 온도에서 핵세인과 헵테인의 증기압은 각각 2 bar, 1 bar이다)
 - $\bigcirc \frac{1}{4}$

 $2 \frac{1}{3}$

 $3) \frac{1}{2}$

- $4) \frac{2}{3}$
- 문 18. 기체 흡수탑에서 A가 기상으로부터 액상으로 흡수된다. A의 액상 몰분율(x)이 0.1이고 기상 몰분율(y)이 0.2일 때, 기액 계면에서의 A의 조성(x_i, y_i)은? (단, 기체흡수는 이중경막론을 따르고, 액상 개별 물질전달 계수(k_xa)는 기상 개별 물질전달 계수(k_ya)의 두 배이다. 기액 계면에서 액상 몰분율(x_i)과 기상 몰분율(y_i)의 평형관계는 $y_i=0.5x_i$ 이다)
 - ① (0.12, 0.06)
 - ② (0.16, 0.08)
 - ③ (0.28, 0.14)
 - 4 (0.40, 0.20)
- 문 19. A와 B로 구성된 2성분 기체 혼합물이 있다. A의 질량조성은 80 %이고, A와 B의 분자량[g/mol]은 각각 40과 10이다. 이 기체 혼합물의 평균 분자량은?
 - ① 25
 - ② 30
 - ③ 35
 - 40
- 문 20. 기체 A가 지점 1에서 δ 떨어진 지점 2로 확산하고 있다. 지점 2의 촉매 표면에서 화학반응(A \rightarrow B)이 순간반응(instantaneous reaction)으로 진행되어 A는 모두 반응한다. 생성된 기체 B는 지점 2에서 지점 1로 확산한다. 이때, 기체 A의 몰플럭스는? (단, 정상상태이며 등온이다. 모든 기체는 x방향으로만 확산한다. 확산계수는 D_{AB} 이고, x=0에서 A의 농도는 C_{A_0} 이다)

- ① $\frac{D_{AB}C_{A_0}}{2\delta}$
- $\bigcirc \frac{D_{AB}C_{A_0}}{\delta}$