기계설계

- 문 1. 축과 보스가 같이 회전하고 보스를 축 방향으로 이동시킬 필요가 있을 때, 사용되는 키는?
 - ① 미끄럼키
 - ② 접선키
 - ③ 평키
 - ④ 안장키
- 문 2. 축이음 중 두 축이 어떤 각도로 교차하면서 그 각이 다소 변화 하더라도 자유롭게 운동을 전달할 수 있는 기계요소는?
 - ① 플랜지 커플링
 - ② 맞물림 클러치
 - ③ 올덤 커플링
 - ④ 유니버설 조인트
- 문 3. 기어에서 피치원의 원둘레를 잇수로 나눈 값은?
 - ① 지름 피치
 - ② 모듈
 - ③ 원주 피치
 - ④ 기초원 피치
- 문 4. 미끄럼 베어링의 마찰현상을 설명하는 페트로프(Petroff)식에 대한 설명으로 옳지 않은 것은? (단, 유체윤활 영역으로 가정한다)
 - ① 윤활유의 점도가 클수록 유막의 두께는 두꺼워진다.
 - ② 점도가 일정하면 저널(축)의 회전수가 클수록 유막의 두께는 두꺼워진다.
 - ③ 베어링 압력이 작을수록 유막의 두께는 두꺼워진다.
 - ④ 마찰계수는 베어링계수(bearing modulus)와 반비례한다.
- 문 5. 두께가 20 mm인 강판 2장을 지름이 20 mm인 리벳 및 리벳구멍을 이용하여 1줄 겹치기 이음을 하고자 한다. 한 피치구간에서 판에 작용하는 인장하중이 20 kN이고 강판의 이음효율이 60 %라면, 강판의 인장응력[MPa]은?
 - ① 30.00
 - ② 33.33
 - 3 40.00
 - 43.75
- 문 6. 단식 블록 브레이크에서 직경 200 mm인 브레이크 드럼 축에 3000 N·cm의 토크가 작용하고 있을 때, 이 축을 정지시키기 위해 필요한 브레이크 블록과 드럼 사이의 작용력[N]은? (단, 브레이크 블록과 드럼 사이의 마찰계수는 0.2로 한다)
 - ① 75
 - ② 150
 - 3 750
 - 4 1500

문 7. 다음 그림과 같이 지름이 d인 축에 비틀림모멘트 T와 굽힘모멘트 M이 동시에 작용할 때, 최대 전단응력은?

- ① $\frac{16}{\pi d^3} \sqrt{M^2 + T^2}$
- ② $\frac{16}{\pi d^4} \sqrt{M^2 + T^2}$
- $3 \frac{32}{\pi d^3} \sqrt{M^2 + T^2}$
- $4 \frac{32}{\pi d^4} \sqrt{M^2 + T^2}$
- 문 8. 인벌류트 치형에 대한 설명으로 옳지 않은 것을 모두 고른 것은?
 - ㄱ. 압력각이 일정하다.
 - ㄴ. 언더컷이 발생하지 않는다.
 - ㄷ. 약간의 중심거리 오차는 허용되므로 조립이 쉽다.
 - 리. 이끝부와 이뿌리로 갈수록 미끄럼률이 증가한다.
 - ㅁ. 전위절삭이 불가능하다.
 - ① 7. =
 - ② ∟. ⊏
 - ③ ∟, □
 - ④ ㄹ, ㅁ
- 문 9. 순수굽힘 상태에 있는, 노치가 없는 회전축의 피로강도가 σ_e 이다. 동일한 재료의 회전축에 노치를 생성할 때, 피로강도는? (단, 정하중에 대한 응력집중계수는 3이고, 노치민감도계수는 0.5로 가정한다)
 - ① $0.25 \sigma_e$
 - ② $0.50 \, \sigma_e$
 - $30.75 \sigma_e$
 - $4 1.00 \sigma_{e}$
- 문 10. 작은 풀리의 접촉각이 θ [rad]이고, 벨트속도가 v [m/s]인 평행걸기 벨트전동장치가 있다. 전달동력 H[W]를 전달하기 위한 벨트의 단면적[\mathbf{m}^2]은? (단, 벨트속도로 인한 원심력은 무시하고, 마찰계수는 μ , 벨트의 이음효율은 η , 벨트의 허용인장응력은 σ_t [N/ \mathbf{m}^2] 이다)

 - $\left(\frac{e^{\mu\theta}}{e^{\mu\theta}-1}\right)\frac{H}{v\sigma_{\bullet}n}$
 - $\left(\frac{e^{\mu\theta}}{e^{\mu\theta}-1}\right)\frac{H\eta}{v\sigma}$
- 문 11. 취성재료에 적용하기에 적합한 파손이론은?
 - ① 최대 주응력설
 - ② 최대 전단응력설
 - ③ 전단변형률 에너지설
 - ④ 최대 주변형률설

- 문 12. 직경 d의 철사를 사용하여 평균직경 D인 코일스프링을 제작하였다. 제작된 코일스프링의 스프링상수를 높이기 위한 방법으로 옳지 않은 것은?
 - ① 철사직경(d)을 증가시킨다.
 - ② 스프링 평균직경(D)을 증가시킨다.
 - ③ 코일 권선수를 감소시킨다.
 - ④ 재질의 전단탄성계수를 증가시킨다.
- 문 13. 높이 h, 키홈 높이 t(=h/2), 폭 b, 길이 L인 보통형 평행키에 힘 P가 작용할 때, 키의 폭이 h/2로 변경되면 키의 압축응력에 대한 전단응력의 비는?
 - ① 0.25

② 0.5

③ 1

- 4) 2
- 문 14. 실린더형 링(Ring)에 핀(Pin)을 억지끼워맞춤으로 조립할 때, 각 부재의 접촉면에 걸리는 원주 접선방향 응력상태로 옳은 것은? (단, 두 부재의 길이는 동일하다고 가정한다)

<u>링(R</u>	ing)	<u> 핀(Pin)</u>
① 인장	응력	인장응력
② 압축	응력	인장응력
③ 인장	응력	압축응력
④ 압축	응력	압축응력

- 문 15. 중실축에서 축의 지름을 3배로 하면 전달토크는?

 $2 \frac{1}{9}$

③ 9배

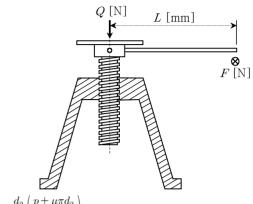
- ④ 27배
- 문 16. 1.5 kN의 힘으로 마찰차를 눌러 12 kW의 동력을 전달하기 위한 원주속도[m/s]는? (단, 마찰계수는 0.2이다)
 - ① 20

2 30

③ 40

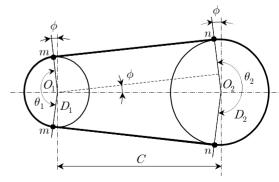
- ④ 50
- 문 17. 다음 표를 참고하여 $\phi 60$ k8의 축지름 치수 범위로 옳은 것은?

<표 1> 치수 공차의 IT 등급별 크기


, , , , , , , , , , , , , , , , , , , ,						
기준 치수의 구분[mm]		IT 등급				
		IT 6급	IT 7급	IT 8급		
초과	이하	단위 [µm]				
30	50	16	25	39		
50	80	19	30	46		

<표 2> 축의 치수 허용차를 표시하는 소문자 기호

기준 치수의 구분[mm]		적용되는 IT 등급		
		IT 4 ~ 7급	IT 3급 이하 IT 8급 이상	
초과	이하	아래 치수 허용차[μm]		
		k		
40	50	+2	0	
50	65	+2	0	


- ① $\phi 60 \sim \phi 60.046$
- ② $\phi60.002 \sim \phi60.032$
- ③ $\phi60.002 \sim \phi60.048$
- $4 \phi 60 \sim \phi 60.030$

문 18. 다음 그림과 같이 바깥지름 d [mm], 유효지름 d_2 [mm], 피치 p [mm]인 한 줄 사각나사를 사용하는 나사잭으로 하중 Q[N]를 들어 올리려고 한다. 나사 부분의 마찰 계수가 μ 이고 나사잭 손잡이 길이가 L [mm]일 때, 손잡이 끝을 잡고 돌리는 힘F[N]는? (단, 나사잭의 자중은 무시한다)

- $\textcircled{1} \quad Q \frac{d_2}{2} \bigg(\frac{p + \mu \pi d_2}{\pi d_2 \mu p} \bigg)$
- $\bigcirc \hspace{0.2cm} Q \frac{d_2}{2L} \Biggl(\frac{p + \mu \pi d_2}{\pi d_2 \mu p}$

- 문 19. 기본 동 정격하중이 5kN인 스러스트 볼베어링이 있다. 이 베어링에 축방향 하중 4kN, 반경방향 하중 1kN이 작용한다. 축방향 하중 계수는 1.0, 반경방향 하중계수는 2.0이라고 한다. 신뢰도 90%를 기준으로 한 이 베어링의 정격수명에 가장 가까운 회전수는?
 - ① 3.2×10^5
 - ② 4.8×10^5
 - $(3) 5.2 \times 10^5$
 - $4) 5.8 \times 10^5$
- 문 20. 다음 그림과 같은 평벨트에서 두 풀리의 지름이 각각 D_1 , D_2 이고 벨트 길이가 L일 때, 두 축간의 중심거리 C는? (단, $\sin\phi = \phi$, $\cos\phi = 1 \frac{1}{2}\phi^2$ 이다)

- $\textcircled{2} \quad C \coloneqq \frac{H + \sqrt{H^2 2(D_2 D_1)^2}}{4} \quad \text{odj} \ H = L \frac{\pi}{2}(D_2 + D_1)$
- $\textcircled{4} \quad C \coloneqq \frac{H + \sqrt{H^2 4(D_2 D_1)^2}}{2} \quad \textcircled{2} \quad \textcircled{2} \mid \mathcal{X} \mid \ H = L \frac{\pi}{2}(D_2 + D_1)$