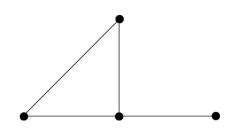
제2교시

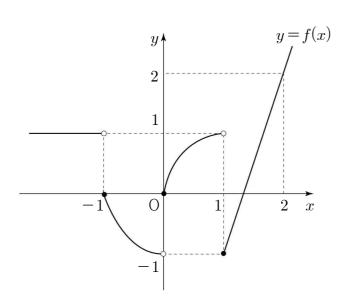
수학 영역 (A형)

5지선다형

- 1. $\sqrt{8} \times \sqrt[4]{4}$ 의 값은? [2점]


- ① $\sqrt{2}$ ② 2 ③ $2\sqrt{2}$ ④ 4

- 2. 두 행렬 $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 \\ 1 & -4 \end{pmatrix}$ 에 대하여 행렬 AB-2B의 모든 성분의 합은? [2점]
 - ① -18
- 2 -16
- 3 14


- (4) -12
- \bigcirc -10

- 3. 두 실수 a, b에 대하여 $\lim_{x\to 2} \frac{x^3-a}{x-2} = b$ 일 때, a+b의 값은? [2점]
 - 14
- 2 16 3 18
- 4) 20

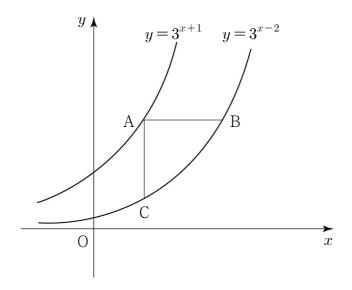
4. 다음 그래프의 각 꼭짓점 사이의 연결 관계를 나타내는 행렬의 성분 중 0의 개수를 p, 1의 개수를 q라 할 때, p-q의 값은? [3점]

5. 함수 y = f(x)의 그래프가 그림과 같다.

 $\lim_{x \to -1+0} f(x) + \lim_{x \to 1-0} f(x)$ 의 값은? [3점]

- $\bigcirc -2$ $\bigcirc -1$ $\bigcirc 0$ $\bigcirc 1$ $\bigcirc 2$

6. 두 사건 A와 B는 서로 독립이고,


$$P(A) = \frac{3}{8}, P(B|A) = \frac{2}{3}$$

일 때, P(A∪B)의 값은? [3점]

- ① $\frac{5}{8}$ ② $\frac{2}{3}$ ③ $\frac{17}{24}$ ④ $\frac{3}{4}$ ⑤ $\frac{19}{24}$

- 7. 닫힌 구간 [-2, 2]에서 정의된 함수 $f(x) = -x^3 + 3x^2 + a$ 의 최솟값이 -4일 때, 최댓값은? (단, a는 상수이다.) [3점]
 - ① 16
- 2 18
- 3 20
- **4** 22
- ⑤ 24

8. 그림과 같이 함수 $y=3^{x+1}$ 의 그래프 위의 한 점 A 와 함수 $y=3^{x-2}$ 의 그래프 위의 두 점 B, C 에 대하여 선분 AB는 x축에 평행하고 선분 AC는 y축에 평행하다. $\overline{AB} = \overline{AC}$ 가 될 때, 점 A의 y좌표는? (단, 점 A는 제1사분면 위에 있다.) [3점]

- ② $\frac{44}{13}$ ③ $\frac{95}{26}$

9. x, y에 대한 연립일차방정식 $\begin{pmatrix} t+5 & 2 \\ t-1 & t \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ -x \end{pmatrix}$ 가 x=0, y=0 이외의 해를 갖도록 하는 모든 실수 t의 값의 합은? [3점]

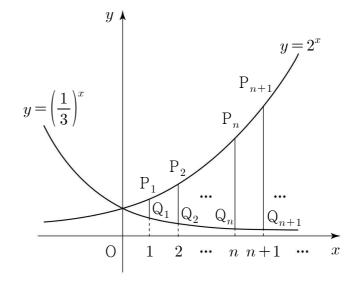
- $\bigcirc -7$ $\bigcirc -4$ $\bigcirc -1$ $\bigcirc 4$ $\bigcirc 2$ $\bigcirc 5$ $\bigcirc 5$

- 10. 곡선 $y = 2x^3 + ax + b$ 위의 점 (1, 1)에서의 접선과 수직인 직선의 기울기가 $-\frac{1}{2}$ 이다. 상수 a, b에 대하여 a^2+b^2 의 값은? [3점]
 - ① 25
- 2 27
- 3 29
- **4** 31
- ⑤ 33

11. 이차정사각행렬 X, Y에 대하여 *를

$$X * Y = (X - Y)(X + Y)$$

라 정의하자. 이차정사각행렬 A, B에 대하여 <보기>에서 옳은 것만을 있는 대로 고른 것은? (단, E는 단위행렬이고, *O*는 영행렬이다.) [3점]


---<보 기>-

- \neg . A * O = O 이면 A = O이다.
- ㄴ. A * B = A * (-B) 이면 $(AB)^2 = A^2B^2$ 이다.
- ㄷ. A * E = A 이면 A + E의 역행렬이 존재한다.
- ① ¬
- 2 L
- 3 =

- ④ ¬, ∟
 ⑤ ∟, □

12. 그림과 같이 자연수 n에 대하여 직선 x=n이 두 곡선 $y=2^x$, $y=\left(\frac{1}{3}\right)^x$ 과 만나는 점을 각각 P_n , Q_n 이라 하자. 사다리꼴 $P_nQ_nQ_{n+1}P_{n+1}$ 의 넓이를 A_n 이라 할 때,

 $\lim_{n\to\infty}\frac{A_n}{2^{n-1}}$ 의 값은? [3점]

- 1
- 3 3
- 4
- ⑤ 5

[13~14] 좌표평면의 원점에 점 P가 있다. 한 개의 동전을 1번 던질 때마다 다음 규칙에 따라 점 P를 이동시키는 시행을 한다.

- (가) 앞면이 나오면 x축의 방향으로 1만큼 평행이동시킨다.
- (L) 뒷면이 $\mathsf{L} \mathsf{L}$ 나오면 y축의 방향으로 $1 \mathsf{L} \mathsf{L}$ 평행이동시킨다.

13번과 14번의 두 물음에 답하시오.

13. 시행을 5번 한 후 점 P가 직선 x-y=3 위에 있을 확률은? [3점]

- ① $\frac{1}{8}$ ② $\frac{5}{32}$ ③ $\frac{3}{16}$

- 14. 시행을 1번 한 후 점 P가 위치할 수 있는 점들을 x좌표가 작은 것부터 차례로 P_1 , P_2 라 하고, 시행을 2번 한 후 점 P가 위치할 수 있는 점들을 x좌표가 작은 것부터 차례로 P_3 , P_4 , P_5 라 하자. 예를 들어, 점 P_5 의 좌표는 (2, 0)이고 점 P_6 의 좌표는 (0, 3)이다. 이와 같은 방법으로 정해진 점 P_{100} 의 좌표를 (a, b)라 할 때, a-b의 값은? [4점]

- ① 1 ② 3 ③ 5
- **4** 7
- **5** 9

15. 수열 $\{a_n\}$ 은 $a_1 = 12$ 이고,

$$\frac{a_{n+1}}{n} = \frac{2a_n}{n+1} + \frac{2^{n+1}}{n+1} \quad (n \ge 1)$$

을 만족시킨다. 다음은 일반항 a_n 을 구하는 과정이다.

주어진 식에 의하여

$$(n+1)a_{n+1} = 2na_n + n \cdot 2^{n+1}$$

이다.
$$b_n = \frac{n}{2^n} a_n$$
이라 하면

$$b_{n+1} = b_n + \boxed{ \left(7 \right\} \right) } \ \left(n \, \geq 1 \right)$$

이고
$$b_1 = \boxed{(\downarrow)}$$
이므로

$$b_n = \boxed{(다)} \quad (n \ge 1)$$

이다. 그러므로

$$a_n = \frac{2^n}{n} \times \boxed{(다) } (n \ge 1)$$

이다.

위의 (7), (F)에 알맞은 식을 각각 f(n), g(n)이라 하고, (나)에 알맞은 수를 p라 할 때, f(p) + g(p)의 값은? [4점]

- ① 15
- 2 18
- 3 21
- **4** 24
- **⑤** 27

16. 이차함수 $f(x) = x^2 + 1$ 에 대하여

$$\lim_{n\to\infty}\sum_{k=1}^n f\left(1+\frac{k}{n}\right)\frac{k^2+2nk}{n^3}$$
의 값은? [4점]

- ① $\frac{26}{5}$ ② $\frac{31}{5}$ ③ $\frac{36}{5}$ ④ $\frac{41}{5}$ ⑤ $\frac{46}{5}$

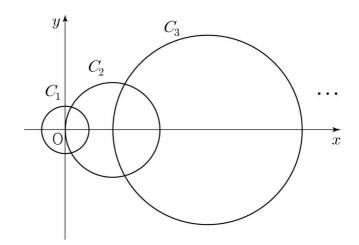
- $17.\ a>1$ 인 실수 a에 대하여 $a^{\log_5 16}$ 이 $2^n (n=1,2,3,\cdots)$ 이 되도록 하는 a를 작은 수부터 크기순으로 나열할 때, k번째 수를 a_k 라 하자. $\sum_{k=1}^{40} \log_5 a_k$ 의 값은? [4점]
 - ① 185
- ② 190 ③ 195
- **4** 200
- ⑤ 205
- 18. 다항함수 f(x)가

$$\lim_{x \to \infty} \frac{f(x)}{x^2} = 1, \ \lim_{x \to 1} \frac{f(x)}{x - 1} = k$$

를 만족시키고, 함수 g(x)는

$$g(x) = \begin{cases} x+1 & (x \le 2) \\ 2-x & (x > 2) \end{cases}$$

이다. 함수 h(x)=f(x)g(x)가 x=2에서 연속이 되도록 하는 상수 k의 값은? [4점]


- $\bigcirc -2$ $\bigcirc -1$ $\bigcirc 0$ $\bigcirc 1$

- 19. 양수 a, b에 대하여 함수 $f(x) = \int_0^x (t-a)(t-b)dt$ 가 다음 조건을 만족시킬 때, a+b의 값은? [4점]
 - (가) 함수 f(x)는 $x = \frac{1}{2}$ 에서 극값을 갖는다.
 - (나) $f(a) f(b) = \frac{1}{6}$
 - 1
- 2
- 3 3
- **4**
- 5 5

- 20. 자연수 n에 대하여 중심이 x축 위에 있고 반지름의 길이가 r_n 인 원 C_n 을 다음과 같은 규칙으로 그린다.
 - (가) 원점을 중심으로 하고 반지름의 길이가 1인 원 C_1 을
 - (나) 원 C_{n-1} 의 중심을 x축의 방향으로 $2r_{n-1}$ 만큼 평행이동시킨 점을 중심으로 하고 반지름의 길이가 $2r_{n-1}$ 인 원 C_n 을 그린다. $(n=2\ ,\ 3\ ,\ 4\ ,\ \cdots\)$

원 C_n 의 중심을 $\left(a_n,\ 0\right)$ 이라 할 때, $\lim_{n\to\infty}\frac{a_n}{r_n}$ 의 값은? [4점]

- ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ 2 ⑤ $\frac{5}{2}$

21. 최고차항의 계수가 1이고 f(0) < f(2)인 사차함수 f(x)가 모든 실수 x에 대하여 f(2+x) = f(2-x)를 만족시킨다. 방정식 f(|x|) = 1의 서로 다른 실근의 개수가 3일 때, 함수 f(x)의 극댓값은? [4점]

11

② 13

3 15

4 17

⑤ 19

단답형

22. 수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{\infty}(a_n-7)=2014$ 일 때,

 $\lim_{n \to \infty} a_n$ 의 값을 구하시오. [3점]

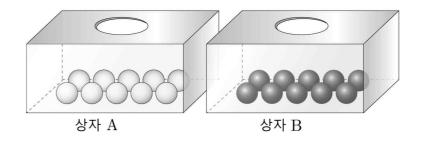
23. 다항식 $(x+2)^6$ 의 전개식에서 x^3 의 계수를 구하시오. [3점]

24. 함수 $f(x)=x^3-x+7$ 에 대하여 f'(2)의 값을 구하시오.

[3점]

26. 화학 퍼텐셜 이론에 의하면 절대온도 T(K)에서 이상 기체의 압력을 P_1 (기압)에서 P_2 (기압)으로 변화시켰을 때의 이상 기체의 화학 퍼텐셜 변화량을 E(kJ/mol)이라 하면 다음 관계식이 성립한다고 한다.

$$E = RT \log_a \frac{P_2}{P_1}$$
 (단, a , R 는 1이 아닌 양의 상수이다.)


절대온도 300K에서 이상 기체의 압력을 1기압에서 16기압으로 변화시켰을 때의 이상 기체의 화학 퍼텐셜 변화량을 E_1 , 절대온도 $240 \mathrm{K}$ 에서 이상 기체의 압력을 1기압에서 x기압으로 변화시켰을 때의 이상 기체의 화학 퍼텐셜 변화량을 E_2 라 하자. $E_1 = E_2$ 를 만족시키는 x의 값을 구하시오. [4점]

 $\mathbf{25.}$ 수열 $\left\{a_{n}
ight\}$ 과 공차가 3인 등차수열 $\left\{b_{n}
ight\}$ 에 대하여 $b_n - a_n = 2n$

이 성립한다. $a_{10}=11$ 일 때, b_5 의 값을 구하시오. [3점]

 $27.\ 10 < x < 100$ 인 x 에 대하여 $\log \sqrt{x}$ 의 가수가 $\log \frac{1}{x}$ 의 가수의 5 배이다. $\log x = \frac{q}{p}$ 일 때, p+q의 값을 구하시오. (단, p, q는 서로소인 자연수이다.) [4점]

- 28. 상자 A에는 흰 공 10개, 상자 B에는 검은 공 10개가 들어 있다. 다음과 같이 [실행 1]부터 [실행 3]까지 할 때, 상자 B의 흰 공의 개수가 홀수일 확률이 $\frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p, q는 서로소인 자연수이다.) [4점]
 - [실행 1] 상자 A에서 임의로 2개의 공을 동시에 꺼내어 상자 B에 넣는다.
 - [실행 2] 상자 B에서 임의로 2개의 공을 동시에 꺼내어 상자 A에 넣는다.
 - [실행 3] 상자 A에서 임의로 2개의 공을 동시에 꺼내어 상자 B에 넣는다.

29. 연속함수 f(x)가 모든 실수 x에 대하여 다음 조건을 만족시킨다.

$$(7) \quad f(-x) = f(x)$$

(나)
$$f(x+2) = f(x)$$

(다)
$$\int_{-1}^{1} (2x+3)f(x) dx = 15$$

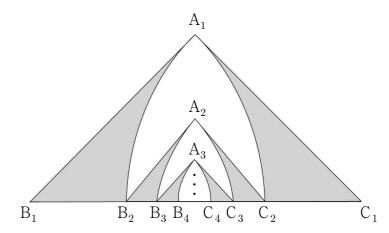
$$\int_{-6}^{10} f(x)dx$$
의 값을 구하시오. [4점]

30. 그림과 같이 길이가 4인 선분 B_1C_1 을 빗변으로 하고 $\angle B_1A_1C_1 = 90$ °인 직각이등변삼각형 $A_1B_1C_1$ 을 그린다. $\overline{B_1A_1} = \overline{B_1C_2}$ 이고 $\overline{C_1A_1} = \overline{C_1B_2}$ 인 선분 B_1C_1 위의 두 점 C_2 의

 $\overline{B_1A_1} = \overline{B_1C_2}$ 이고 $\overline{C_1A_1} = \overline{C_1B_2}$ 인 선분 B_1C_1 위의 두 점 C_2 와 B_2 에 대하여 부채꼴 $B_1A_1C_2$ 와 부채꼴 $C_1A_1B_2$ 를 그린 후 생긴

모양에 색칠하고 그 넓이를 S_1 이라 하자.

선분 B_2C_2 를 빗변으로 하고 삼각형 $A_1B_1C_1$ 의 내부의 점 A_2 에 대하여 $\angle B_2A_2C_2=90$ ° 인 직각이등변삼각형 $A_2B_2C_2$ 를 그린다. $\overline{B_2A_2}=\overline{B_2C_3}$ 이고 $\overline{C_2A_2}=\overline{C_2B_3}$ 인 선분 B_2C_2 위의 두 점 C_3 과 B_3 에 대하여 부채꼴 $B_2A_2C_3$ 과 부채꼴 $C_2A_2B_3$ 을 그린 후 생긴


iggrup모양에 색칠하고 그 넓이를 S_2 라 하자.

선분 B_3C_3 을 빗변으로 하고 삼각형 $A_2B_2C_2$ 의 내부의 점 A_3 에 대하여 $\angle B_3A_3C_3=90$ ° 인 직각이등변삼각형 $A_3B_3C_3$ 을 그린다. $\overline{B_3A_3}=\overline{B_3C_4}$ 이고 $\overline{C_3A_3}=\overline{C_3B_4}$ 인 선분 B_3C_3 위의 두 점 C_4 와 B_4 에 대하여 부채꼴 $B_3A_3C_4$ 와 부채꼴 $C_3A_3B_4$ 를 그린 후 생긴

모양에 색칠하고 그 넓이를 S_3 이라 하자.

이와 같은 과정을 계속하여 얻은 S_n 에 대하여

 $\frac{1}{4-\pi}\sum_{n=1}^{\infty}S_n=a+\sqrt{b}\;(a\;,\;b$ 는 정수)일 때, a^2+b^2 의 값을 구하시오. [4점]

※ 확인 사항

답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인하시오.