
통계 학

문 1. 평균이 μ_A 이고 분산이 σ_A^2 인 정규모집단 A와 평균이 μ_B 이고 분산이 σ_R^2 인 정규모집단 B의 분포가 다음과 같을 때, 두 정규모집단의 평균과 분산의 관계가 바르게 짝지어진 것은?

- (1) $\mu_A = \mu_B, \ \sigma_A^2 > \sigma_B^2$
- ② $\mu_A = \mu_B, \ \sigma_A^2 < \sigma_B^2$
- ③ $\mu_A > \mu_B$, $\sigma_A^2 > \sigma_B^2$
- (4) $\mu_A > \mu_B$, $\sigma_A^2 < \sigma_B^2$
- 문 2. 어느 연속확률변수의 확률밀도함수 f(x)가 다음과 같을 때, 상수 a의 값은?

$$f(x) = \begin{cases} ax(1-x), & 0 \le x < 1\\ 0, & x < 0 \ \exists \ \exists \ x \ge 1 \end{cases}$$

- ① 4
- ② 6
- ③ 9
- ④ 10
- 문 3. 표본상관계수가 -0.7인 자료 $(X_1, Y_1), \dots, (X_n, Y_n)$ 에 단순선형회귀 모형 $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, $i = 1, \dots, n$ 을 적용하였을 때 결정계수의 값은? (단, ϵ_i 는 서로 독립이며 평균이 0이고 분산이 σ^2 인 정규 분포를 따른다고 가정한다)
 - (1) -0.7
 - (2) 0.7
 - $\sqrt{0.7}$
 - **4** 0.49
- 문 $4.~X_1,X_2,\cdots,X_{10}$ 을 평균 μ , 분산 σ^2 인 정규모집단에서의 임의표본 (random sample)이라고 하자. 이들의 표본평균과 표본분산이 각각 $\overline{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$ 와 $S^2 = \frac{1}{9} \sum_{i=1}^{10} (X_i - \overline{X})^2$ 일 때, 이에 대한 설명으로 옳은 것만을 모두 고르면?
 - ㄱ. $\frac{9S^2}{2}$ 의 분포는 자유도가 9인 카이제곱분포를 따른다.
 - ㄴ. $\frac{\sqrt{10}(\overline{X}-\mu)}{c}$ 의 분포는 자유도가 9인 t분포를 따른다.
 - ㄷ. $\frac{10(\overline{X}-\mu)^2}{\sigma^2}$ 의 분포는 자유도가 10인 카이제곱분포를
 - \bigcirc
 - ②
 - ③ 7, ∟
 - ④ ∟, ⊏

문 5. 두 분포 f_0 와 f_1 이 다음과 같을 때, 확률변수 X에 대한 가설 H_0 : "X는 f_0 의 분포를 따른다." 대 H_1 : "X는 f_1 의 분포를 따른다."를 검정하기 위해 하나의 X를 관측하고 이에 대한 기각역을 X=0 또는 X=3'으로 설정하였다. 이때, 제1종 오류를 범할 확률과 제2종 오류를 범할 확률은?

X	0	1	2	3	합계
f_0	0.2	0.1	0.3	0.4	1
f_1	0.3	0.3	0.3	0.1	1

제1종 오류륵 범학 활륙 제2종 오류를 범할 확률

.4
.6
.4
.6
)

- 문 6. 표준정규분포를 따르는 두 확률변수 Z_1 과 Z_2 가 서로 독립일 때, 이에 대한 설명으로 옳지 않은 것은?
 - ① $\frac{Z_1^2}{Z^2}$ 의 분포는 분자의 자유도가 1, 분모의 자유도가 1인 F분포를 따른다.
 - ② $Z_1^2 + Z_2^2$ 은 자유도가 1인 카이제곱분포를 따른다.
 - ③ $Z_1 Z_2$ 와 $Z_1 + Z_2$ 는 같은 분포를 따른다.
 - ④ $Z_1 Z_2$ 와 $Z_1 + Z_2$ 는 서로 독립이다.
- 문 7. 표본의 크기가 20인 어느 자료에 단순선형회귀모형 $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, $i=1,2,\cdots,20$ 을 적용하여 얻은 결정계수 값이 0.2이다. 오차항 ϵ_i 는 서로 독립이며 정규분포 $N(0,\sigma^2)$ 을 따른다고 할 때, 회귀모형의 유의성 검정을 위한 F통계량의 값과 유의수준 5%에서 회귀모형의 유의 여부에 대한 설명으로 옳은 것은? (단, $F_{\alpha}(m,n)$ 은 분자의 자유도가 m, 분모의 자유도가 n인 F분포의 $(1-\alpha) \times 100$ 번째 백분위수를 나타내고, $F_{0.05}(1,18) = 4.41$, $F_{0.05}(1,19) = 4.38$, $F_{0.05}(2,18) = 3.55, \ F_{0.05}(2,19) = 3.52$ 이다)
 - ① F통계량의 값이 4이므로 회귀모형은 유의하다.
 - ② F통계량의 값이 4.5이므로 회귀모형은 유의하다.
 - ③ F통계량의 값이 4이므로 회귀모형은 유의하지 않다.
 - ④ F통계량의 값이 4.5이므로 회귀모형은 유의하지 않다.
- 문 8. 어느 지역에서 결혼 생활 중인 200명을 임의추출하여 결혼 생활 만족도와 교육 수준을 조사한 결과가 다음과 같을 때, 결혼 생활 만족도와 교육 수준과의 독립성 여부를 검정하기 위한 카이제곱 검정통계량의 값과 유의수준 5 %에서의 임계치는? (단, $\chi^2_{\alpha}(k)$ 는 자유도가 k인 카이제곱분포의 $(1-\alpha) \times 100$ 번째 백분위수를 나타낸다)

결혼 생활 만족도 교육 수준	만족	불만족	합계
대학교	50	50	100
고등학교	20	30	50
중학교	30	20	50
합계	100	100	200

	카이제곱검정통계량의 값	임계치
1	4	$\chi^2_{0.05}(2)$
2	4	$\chi^2_{0.025}(2)$
3	8	$\chi^2_{0.05}(6)$
(4)	8	$\chi^2_{0.025}(6)$

문 9. 어느 공장에서 세 가지 공법에 의해 생산되는 금속가공품의 평균인장강도에 차이가 있는지 조사하기 위해 생산된 제품 가운데 각 공법당 5개씩 임의추출하고 인장강도를 측정하여 얻은 분산 분석표의 일부가 다음과 같을 때, 귀과 ①의 값은?

요인	제곱합	자유도	<i>F</i> 값
공법	100		(L)
오차	60	9	

 \bigcirc (L) ① 12 10 (2) 12 0.5

(4) 13 0.5

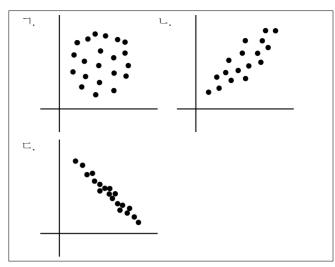
10

③ 13

문 10. 서로 독립이고 구간 (0,1)에서 균일분포를 따르는 확률변수 X_1, \dots, X_{10} 에 대해 확률변수 U_i 를 다음과 같이 정의하였다.

$$U_i = \begin{cases} 1, & X_i \le 0.1 \\ 0, & X_i > 0.1 \end{cases}$$

 $S = U_1 + U_2 + \dots + U_{10}$ 일 때, S의 기댓값 E(S)는?


- ① 1
- ② 2
- 3 4
- **4**) 5

문 11. 다음은 23개의 자료를 줄기 - 잎 그림(stem and leaf plot)으로 정리한 것이다. 중앙값, 산술평균, 최빈값, 범위 중 가장 큰 값은?

> 5 2 6 7 9 6 | 1 3 4 4 5 5 8 8 8 9 7 | 1 4 4 8 9 8 6 7 10 | 1

- ① 중앙값
- ② 산술평균
- ③ 최빈값
- ④ 범위
- 문 12. 어느 대학의 학기별 성적에 대한 평점은 평균이 2.95이고 표준 편차가 0.5인 정규분포를 따른다고 한다. 이 대학에서 학기별 성적이 상위 10 %에 해당하는 학생들에게 장학금을 지급할 때 한 학생이 장학금을 받기 위한 최소 평점은? (단, Z는 표준정규 분포를 따르는 확률변수이고. P(Z < 1.28) = 0.9이다)
 - \bigcirc 3.55
 - ② 3.59
 - ③ 3.63
 - 4 3.67

문 13. 다음과 같은 산점도를 갖는 각 자료들의 상관계수를 작은 것부터 순서대로 바르게 나열한 것은?

- ① つくしくに
- ② 7< < < L

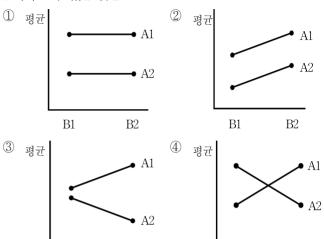
- 문 14. 어느 공장에서 생산되는 쇠 파이프의 지름은 평균이 μ 이고 표준 편차가 1인 정규분포를 따른다고 한다. 평균 μ 에 대한 가설 $H_0: \mu = 20$ 대 $H_1: \mu \neq 20$ 을 검정하기 위해 임의추출한 9개의 쇠 파이프를 조사한 결과 지름의 표본평균이 21이었다. 이 검정에 대한 p -값(유의확률)은? (단, Z는 표준정규분포를 따르는 확률 변수이다)
 - ① P(Z < -3)
 - ② P(Z>-3)
 - (3) P(|Z| < 3)
 - (4) P(|Z| > 3)
- 문 15. 다음은 지역 A와 B에서 실시하는 복지 프로그램 대상자들의 평균연령에 차이가 있는지 알아보기 위해 두 지역에서 각각 50명의 복지 프로그램 대상자들을 임의추출하여 연령을 조사한 결과이다.

	A지역	B지역	
표본평균	37	40	
표본표준편차	7	9	

두 지역의 복지 프로그램 대상자들의 평균연령에 차이가 있는지 알아보기 위한 검정통계량의 값은 -1.86이다. 이에 대한 설명으로 옳지 않은 것은? (단, Z가 표준정규분포를 따르는 확률변수일 때, P(|Z| < 1.96) = 0.95이고 P(|Z| < 1.645) = 0.9이다)

- ① 유의수준 0.05에서 두 지역 대상자들의 평균연령은 다르다고 할 수 있다.
- ② 유의수준 0.1에서 두 지역 대상자들의 평균연령은 다르다고 할 수 있다.
- ③ 유의수준 0.05에서 A지역 대상자들의 평균연령이 B지역보다 낮다고 할 수 있다.
- ④ 유의수준 0.1에서 A지역 대상자들의 평균연령이 B지역보다 낮다고 할 수 있다.

- 문 16. 표본공간 S에서 정의된 사건 A와 B에 대한 설명으로 옳은 것만을 모두 고르면? (단, A^c 은 A의 여사건, B^c 는 B의 여사건을 나타낸다)
 - $\neg. P(A \cap B^c) = P(A \cup B) P(B)$
 - \vdash . $P(A^c | B) = 1 P(A | B)$
 - 다. 사건 A와 사건 B가 서로 독립이면, 사건 A^c 과 사건 B도 서로 독립이다.
 - ① 7, ∟
 - ② 7. ⊏
 - ③ ∟. ⊏
 - ④ 7, ∟, ⊏
- 문 17. 단순선형회귀모형 $Y_i=\beta_0+\beta_1X_i+\epsilon_i,\ i=1,2,\cdots,n$ 에서 β_0 와 β_1 의 최소제곱추정량을 각각 b_0 과 b_1 이라고 할 때, 예측값 $\hat{Y}_i=b_0+b_1X_i$ 와 잔차 $r_i=Y_i-\hat{Y}_i$ 에 대한 설명으로 옳은 것만을 모두 고르면? (단, $\overline{Y}=\frac{1}{n}\sum_{i=1}^nY_i$ 이고, ϵ_i 는 서로 독립이며, 평균이 0이고, 분산이 σ^2 인 정규분포를 따른다고 가정한다)


기.
$$\sum_{i=1}^{n} r_i X_i = 0$$
니.
$$\sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y}) r_i = 0$$
니.
$$\sum_{i=1}^{n} r_i^2$$
니.
$$\frac{\sum_{i=1}^{n} r_i^2}{n-1}$$
의 기댓값은 σ^2 이다.

- ① ¬
- ② L
- ③ 7. ∟
- ④ ¬, ∟, ⊏
- 문 18. 다음은 어느 지역에서 성별과 새로운 정책에 대한 지지 여부가 관련이 있는지 알아보기 위해 1,000명을 임의추출하여 조사한 결과이다. 이 조사에 대한 설명으로 옳지 않은 것은?

	찬성	미결정	반대
남자	250	100	50
여자	200	160	240

- ① 새로운 정책에 대한 미결정 비율은 전체의 26 %이다.
- ② 남자이면서 새로운 정책을 찬성하는 사람은 전체의 25 %이다.
- ③ 새로운 정책에 대한 찬성 의견을 성별에 따라 비교하면 남자의 비율이 여자의 비율보다 2배 이상 높다.
- ④ 여자 중에서 새로운 정책을 반대하는 사람의 비율은 전체 여자의 40 %이다.

문 19. 다음 그림은 반복수가 2인 이원배치법에서 요인 A의 수준이 A1, A2이고 요인 B9의 수준이 B1, B2인 실험을 통해 얻은 결과에 대한 처리평균을 표시한 것이다. 그림 중 B9의 주효과는 없고, A9의 주효과와 A9와 B9의 교호작용(상호작용, interaction) 효과가 모두 있는 것은?

문 20. 확률변수 X는 시행 횟수가 n이고 성공 확률이 p인 이항분포를 따른다고 한다. E(X) = 5이고 $E(X^2) = 29.5$ 일 때, p의 값은?

В1

В2

В2

① 0.1

В1

- ② 0.2
- ③ 0.8
- (4) 0.9